新利luck 18在线娱乐|新利18国际娱乐开户

编辑

Skip to content THE SOURCE Close TopicsTopics Arts & Culture Business & Entrepreneurship Campus & Community Humanities & Society Medicine & Health Science & Technology SchoolsSchools Arts & Sciences Brown School McKelvey School of Engineering Olin Business School Sam Fox School of Design & Visual Arts School of Continuing & Professional Studies School of Law School of Medicine PublicationsPublications Newsroom The Record Washington Magazine Search Menu Search for: Search Close NEWSROOM Sections Find an Expert Media Resources Newsroom Stories Perspectives WashU Experts WashU in the News Why do we sleep? Researchers propose an answer to this age-old question (Image: Pexels) By Chris Woolston January 8, 2024 SHARE Sleep is a fundamental need, just like food or water. “You’ll die without it,” said Keith Hengen, an assistant professor of biology at Washington University in St. Louis. But what does sleep actually accomplish? For years, the best researchers could say is that sleep reduces sleepiness — hardly a satisfying explanation for a basic requirement of life. But by melding concepts from the fields of physics and biology, Hengen and a team of Arts & Sciences researchers have constructed a theory that could explain both the meaning of sleep and the complexity of the brain. As reported in a new study published in Nature Neuroscience, they tracked the brain activity of sleeping rats to make the case that the brain needs to regularly reset its operating system to reach “criticality,” a state that optimizes thinking and processing. The study was funded in part by a seed grant from the Incubator for Transdisciplinary Futures, a signature initiative of the Arts & Sciences Strategic Plan. Hengen “The brain is like a biological computer,” Hengen said. “Memory and experience during waking change the code bit by bit, slowly pulling the larger system away from an ideal state. The central purpose of sleep is to restore an optimal computational state.” Co-authors of the paper include Ralf Wessel, a professor of physics; Yifan Xu, a graduate student in biology studying neuroscience; and Aidan Schneider, a graduate student in the Computational & Systems Biology program, all in Arts & Sciences. Wessel said physicists have been thinking about criticality for more than 30 years, but they never dreamed the work would have implications for sleep. In the world of physics, criticality describes a complex system that exists at the tipping point between order and chaos. “At one extreme, everything is completely regular. At the other extreme, everything is random,” Wessel said. Criticality maximizes the encoding and processing of information, making it an attractive candidate for a general principle of neurobiology. In a 2019 study, Hengen and Wessel established that the brain actively works to maintain criticality. In the new paper, the team provides the first direct evidence that sleep restores the computational power of the brain. It’s a radical departure from the long-held assumption that sleep must somehow replenish mysterious and unknown chemicals depleted during waking hours. After their 2019 paper, Hengen and Wessel theorized that learning, thinking and being awake must push the brain away from criticality and that sleep is perfectly positioned to reset the system. “We realized this would be a really cool and intuitive explanation for the core purpose of sleep,” Hengen said. “Sleep is a systems-level solution to a systems-level problem.” Brain cascades To test their theory on the role of criticality in sleep, the researchers tracked the spiking of many neurons in the brains of young rats as they went about their normal sleeping and waking routines. “You can follow these little cascades of activity through the neural network,” Hengen said. These cascades, also called neural avalanches, reflect how information flows through the brain, he said. “At criticality, avalanches of all sizes and durations can occur. Away from criticality, the system becomes biased toward only small avalanches or only large avalanches. This is analogous to writing a book and only being able to use short or long words.” As predicted, avalanches of all sizes occurred in the rats that had just woken up from restorative sleep. Across the course of waking, the cascades started to shift toward smaller and smaller sizes. The researchers found they could predict when rats were about to go to sleep or wake up by tracking the distribution of avalanches. When cascade sizes were reduced to a certain point, sleep wasn’t far away. “The results suggest that every waking moment pushes relevant brain circuits away from criticality, and sleep helps the brain reset,” Hengen said. Physics meets biology When physicists first developed the concept of criticality in the late 1980s, they were looking at piles of sand on a checkerboard-like grid, a scenario seemingly far removed from brains. But those sand piles provided an important insight, Wessel said. If thousands of grains are dropped on the grid following simple rules, the piles quickly reach a critical state where interesting things start happening. Avalanches both large and small can start without warning, and piles in one square start spilling into the others. “The whole system organizes itself into something extremely complex,” he said. Wessel The neural avalanches taking place in the brain are much like the avalanches of sand on a grid, Wessel said. In each case, the cascades are the hallmark of a system that has reached its most complex state. According to Hengen, every neuron is like an individual grain of sand following very basic rules. Neurons are essentially on/off switches that decide whether or not to fire based on straightforward inputs. If billions of neurons can reach criticality — the sweet spot between too much order and too much chaos — they can work together to form something complex and wondrous. “Criticality maximizes a bunch of features that sound very desirable for a brain,” Hengen said. The new study was a multidisciplinary effort. Hengen, Xu and Schneider designed the experiments and provided the data, while Wessel joined the team to implement the mathematical equations necessary to understand sleep in the framework of criticality. “It’s a beautiful collaboration between physics and biology,” Wessel said. Originally published on The Ampersand website. SHARE Media Contact  Talia Ogliore TopicsBiologyNeuroscience & MemoryPhysical SciencesScience & Technology Schools Arts & SciencesRead more stories from Arts & SciencesVisit Arts & Sciences Leave a Comment Comments and respectful dialogue are encouraged, but content will be moderated. Please, no personal attacks, obscenity or profanity, selling of commercial products, or endorsements of political candidates or positions. We reserve the right to remove any inappropriate comments. We also cannot address individual medical concerns or provide medical advice in this forum. You Might Also Like Understanding criticality and the brain’s neural networks October 7, 2019 Published In Newsroom Stories Sleep deprivation accelerates Alzheimer’s brain damage January 24, 2019 Published In Newsroom Stories WashU team to study virus transmission, human-wildlife interaction October 24, 2023 Published In Newsroom Stories Latest from the Newsroom Recent Stories Reframing voting as ‘duty to others’ key to increasing engagement, turnout Modifying homes for stroke survivors saves lives, extends independence Book explores consequences of political conversations WashU Experts Ten Commandments display probably not legal Social workers key to psychedelic-assisted therapies DeFake tool protects voice recordings from cybercriminals WashU in the News NFL faces ‘Sunday Ticket’ lawsuit: Here’s what’s at stake for the league Transcript: Ezra Klein Interviews Yanna Krupnikov The brain has a waste removal system and scientists are figuring out how it works Publications Washington Magazine Newsroom Record Explore Bookshelf Video Gallery Connect Media Resources Contact Facebook Instagram ©2024 Washington University in St. Louis Go back to top

18luck新利代理 新利娱乐18计划 稳添利新亨18号 新利18是什么网站
Copyright ©新利luck 18在线娱乐|新利18国际娱乐开户 The Paper All rights reserved.