新利18luck服务器|新利18体育官网登陆

编辑

Skip to content Information for: Prospective Students Current Students Faculty & Staff Alumni Industry Apply Now! It's easy to start your application. Undergraduate Admissions Graduate Admissions Dual Degree Program Graduate applicants: Attend an info session and skip the application fee McKelvey School of Engineering Academics Academics The world needs difference-makers. Academic Programs Academic Calendar Undergraduate Admissions Langsdorf Scholars Student Profiles Academics Graduate Admissions Financial Aid Application Process Deadlines Recruitment Schedule Student Profiles Academics Departments Biomedical Engineering Computer Science & Engineering Division of Engineering Education Electrical & Systems Engineering Energy, Environmental & Chemical Engineering Mechanical Engineering & Materials Science Sever Institute - professional degrees Technology & Leadership Center - training for industry Academics Dual Degree Program Study Abroad Undergraduate Research Summer Research Opportunities Academics Interdisciplinary PhD Programs Computational & Data Sciences Imaging Science Materials Science & Engineering Academics UMSL/WashU Joint Engineering Program Main Menu Faculty & Research Looking for someone? Search Engineering Faculty View Faculty Directory Faculty & Research Creating knowledge for a better world. Faculty Directory Faculty Openings Faculty Teaching Awards Faculty resources & policies Research Research Centers Research Toolkit Main Menu Offices & Services Offices & Services The support you need, both in and outside the classroom. Student Services Graduate Student Services Undergraduate Student Services Commencement First Year Center Mentor Programs Student Organizations Engineering Summer School Women & Engineering Center Offices & Services Non-academic Offices Engineering IT Event Planning & Space Reservation Human Resources Faculty resources & policies International Relations Industry Relations Marketing & Communications Research Development & Administration Offices & Services Alumni Emerging Leader Awards Make a Gift McKelvey Engineering Awards Scholars in Engineering Program University Advancement Offices & Services Main Menu News & Events Featured News WashU awarded up to $20 million to develop high-tech imaging technology Chao Zhou leads multidisciplinary team to create portable device to scan for eye diseases 09.13.2023 --> News & Events Get involved and stay informed. Event Calendar The comprehensive source for all McKelvey School of Engineering events. News Explore the latest news from the school with stories ranging from groundbreaking research to how McKelvey Engineering students are making an impact in the world. Notables Engineering Magazine Engineering Momentum is the school’s bi-annual magazine featuring stories about research, faculty, students and alumni. Main Menu About About We're here to create a positive impact in the world. About McKelvey Engineering St. Louis Strategic Plan Equity, Diversity & Inclusion Celebrating Black Engineers in STEM Women & Engineering Center About Leadership Meet the Dean National Council Senior Leadership About Facilities Buildings Makerspace Machine Shop Tour our buildings About Engineering Directory WashU Directory About University Partners Gephardt Institute Institute for School Partnership Skandalaris Center Sustainability About Main Menu Don't know where to start? Prospective Students Current Students Faculty & Staff Alumni Industry Start your application today Undergraduate Admissions Graduate Admissions Dual Degree Program Graduate applicants: Attend an info session and skip the application fee Search Trending Searches graduate admissions academic programs financial aid academic calendar maps & directions summer school Home News & Events Efficient lithium-air battery under development to speed electrification of vehicles Efficient lithium-air battery under development to speed electrification of vehicles Xianglin Li leads team with $1.5 million from ARPA-E for next-generation, high-energy battery Beth Miller  02.28.2024 With $1.5 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), Xianglin Li, associate professor of mechanical engineering & materials science, will lead a multi-institutional team to develop a lithium-air (Li-Air) battery with ionic liquids to deliver efficient, reliable and durable performance for high-energy and high-power applications. (Credit: iStock photo) Share Share on Facebook Share on Twitter Share on Linkedin Email With the U.S. government’s goal to reduce emissions from transportation as part of a net-zero climate goal by 2050, efficient and reliable batteries are a necessity. A collaborative team of researchers led by the McKelvey School of Engineering at Washington University in St. Louis is working toward that goal by developing an energy storage system that would have a much higher energy density than existing systems. With $1.5 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), Xianglin Li, associate professor of mechanical engineering & materials science, will lead a multi-institutional team to develop a lithium-air (Li-air) battery with ionic liquids to deliver efficient, reliable and durable performance for high-energy and high-power applications. The Phase I, 18-month funding is part of $15 million ARPA-E awarded to 12 projects across 11 states to advance next-generation, high-energy storage solutions to speed electrifying the aviation, railroad and maritime transportation sectors. Funded through the Pioneering Railroad, Oceanic and Plane ELectrification with 1K energy storage systems (PROPEL-1K) program, projects aim to develop emission-free energy storage systems with “1K” technologies capable of achieving or exceeding 1,000-Watt-hour per kilogram (Wh/kg) and 1,000 Watt-hour per liter (Wh/L). “The current commercially available lithium-ion batteries have the specific energy of around 200 watt-hour per kilogram, and those would not work because 1,000 watt-hour per kilogram is beyond their thermodynamic limit,” Li said. “We need to increase that specific energy density by four to five times, so this is a very aggressive goal.” If successful, PROPEL-1K technologies would electrify regional flights traveling as far as 1,000 miles with up to 100 people, all North American railroads, and all vessels operating exclusively in U.S. territorial waters, the agency said.  Li’s team’s concept would use pure lithium in the anode because it has the highest energy density. They will use a very thin separator with unique properties to transfer the lithium ion back and forth. The cathode must contain catalysts that make the electrochemical reaction of oxygen reduction and evolution reactions happen quickly and efficiently. “All of these components must be put together almost perfectly, because that 1,000 watt-hour per kilogram is near the limit of any energy storage technology,” Li said. “That's why we have a large team with complementary experts on different parts of this whole system. My team will lead the overall design of the system and focus on the cathode where the oxygen reaction would occur.” For the proposed Li-air flow battery, the team will use a unique electrolyte: ionic liquids with high oxygen solubility, low viscosity, ultra-low volatility and high ionic conductivity. The team will also customize catalysts and lithium metal protection membranes to enhance battery performance while reducing power consumption during electrolyte circulation. Preliminary experimental results have shown a tenfold increase in capacity by using a circulating electrolyte. “Commercial batteries use organic electrolytes, but because our Li-air cell is an open system, that electrolyte would evaporate over time,” Li said. “Ionic liquid is a salt that acts like a liquid but does not evaporate and can flow at room temperature.” Co-principal investigators on the project include Peng Bai, associate professor, and Vijay Ramani, the Roma B. & Raymond H. Wittcoff Distinguished University Professor, both in the Department of Energy, Environmental & Chemical Engineering in McKelvey Engineering; Mark Shiflett, Foundation Distinguished Professor at the University of Kansas; Ivan Vlassiouk, senior research staff at the Oak Ridge National Laboratory; James Saraidaridis, principal research engineer at Raytheon Technologies Research Center; and Sherry Quinn, electrochemist at Powerit. Together, they will work to develop a prototype that may be further developed and taken to market. The team also will conduct an economic analysis of its Li-air flow battery systems to the aviation, railroad and maritime transportation sectors to highlight the importance of advancing energy storage technologies beyond the current Li-ion battery technology. The McKelvey School of Engineering at Washington University in St. Louis promotes independent inquiry and education with an emphasis on scientific excellence, innovation and collaboration without boundaries. McKelvey Engineering has top-ranked research and graduate programs across departments, particularly in biomedical engineering, environmental engineering and computing, and has one of the most selective undergraduate programs in the country. With 165 full-time faculty, 1,420 undergraduate students, 1,614 graduate students and 21,000 living alumni, we are working to solve some of society’s greatest challenges; to prepare students to become leaders and innovate throughout their careers; and to be a catalyst of economic development for the St. Louis region and beyond. Click on the topics below for more stories in those areas Research Mechanical Engineering & Materials Science Back to News Faculty in this story View Profile Xianglin Li Associate Professor You may also be interested in: Advancing robot autonomy in unpredictable environments Yiannis Kantaros will enable teams of robots to interact collaboratively, perceive and respond to their environment with a CAREER Award from the National Science Foundation. 06.10.2024 DEMIST artificial intelligence tool may enhance usability of medical images A deep-learning-based image denoising method developed by Abhinav Jha may improve detection of myocardial defects in low-count SPECT scans. 06.04.2024 Quantum physics may help lasers see through fog, aid in communications JT Shen to pioneer two-color quantum photonic laser with DARPA grant. 06.04.2024 Facebook Twitter LinkedIn Instagram YouTube Engineering Departments Biomedical Engineering Computer Science & Engineering Division of Engineering Education Electrical & Systems Engineering Energy, Environmental & Chemical Engineering Mechanical Engineering & Materials Science Sever Institute - professional degrees Technology & Leadership Center - training for industry Contact Us Washington University in St. Louis McKelvey School of Engineering MSC: 1100-122-303 1 Brookings Drive St. Louis, MO 63130-4899 Contact Us Resources COVID-19 Resources Canvas Directory Equity, Diversity & Inclusion Emergency Management Engineering IT Maps & Directions Make a Gift WebFAC / WebSTAC ©2024 Washington University in St. Louis. Policies

新利18哪里下载 新利18怎么玩 新利18体育官网下载 18新利游戏登录
Copyright ©新利18luck服务器|新利18体育官网登陆 The Paper All rights reserved.